Densities, Viscosities, Refractive Indices, and Speeds of Sound for Methyl Acetoacetate + Aliphatic Alcohols ($\left.\mathrm{C}_{1}-\mathrm{C}_{8}\right)^{\dagger}$

Tejraj M. Aminabhavi,' Mrityunjaya I. Aralaguppi, Shivaputrappa B. Harogoppad, and Ramachandra H. Balundgi
Department of Chemistry, Karnatak University, Dharwad 580003, India

Abstract

Densities, viscosities, refractive indices, and speeds of sound have been measured at 298.15, 303.15, and 308.15 K for the binary mixtures of methyl acetoacetate with methyl alcohol, ethyl alcohol, 1-propanol, 2-propanol, 2-methyl-1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 2-octanol. From these results, excess molar volumes, excess molar refractions, viscosity deviations, and isentropic compressibility deviations have been calculated. These results are further fitted to the polynomial relation to estimate the coefficients and standard errors. The experimental and calculated quantities are used to discuss the mixing behavior of the components.

Introduction

A study of molecular interactions in binary liquid mixtures has been the subject of active investigation in our laboratories in recent years ($1-7$). Methyl acetoacetate (MAA) is a versatile solvent used in the syntheses of a number of heterocycles and antipyrenes. Moreover, it is known to exhibit a keto-enol tautomerism which, to a great extent, depends on the surrounding medium (8). Thus, upon mixing with alcohols of varying chain lengths, these mixtures might generate interesting properties due to specific interactions, hydrogen bond effects, etc. On the other hand, alcohols are the most well known solvents used to study the hydrophobic effects. In view of their simple molecular structure, increasing hydrophobic character with increasing chain length and high solubility in polar solvents, most of their physical properties have been studied extensively (9). Thermodynamic properties of MAA + alcohol mixtures are of particular interest because MAA provides both hydroxy (-OH) and ketonic ($>\mathrm{C}=0$) groups for interactions with alcohols. To the best of our knowledge, the results of excess properties of aliphatic alcohols with an ester such as MAA are not available.

To gain some understanding about the nature of interactions in MAA + alcohol mixtures, properties such as density ρ, refractive index n_{D}, viscosity η, and speed of sound u have been measured in the temperature interval of 298.15-308.15 K. These data are used to calculate the excess quantities which are then fitted to a Redlich-Kister-type polynomial relation (10) to estimate the coefficients and standard errors. The present paper is, therefore, concerned about the study of molecular interactions in terms of excess volumes $V^{\mathbf{E}}$, excess molar refractions R^{E}, viscosity deviations $\Delta \eta$, and isentropic compressibility deviations Δk_{s}. The temperature dependence of these properties will be discussed.

Experimental Section

The reagent grade solvents, namely, methyl alcohol, ethyl alcohol, 1-propanol, and 2-methyl-1-propanol, were from S.D. Fine Chemicals, Bombay. 2-Propanol and 1-pentanol were purchased from E. Merck. 1-Butanol, 1-heptanol, and

[^0]2-octanol were BDH samples, 1-hexanol was a Fluka chemical, and methyl acetoacetate was purchased from SRL, Bombay. All the solvents were purified according to the well-established procedures (11, 12). The gas chromatographic tests of the purified solvents showed a purity of $>99 \mathrm{~mol} \%$. The purity of solvents was further ascertained by the constancy of their boiling temperatures during final distillations and also by comparing their densities and refractive indices at 298.15 K which agreed reasonably with the corresponding literature values (12, 13). See Table I.
Mixtures were prepared by mass in specially designed ground-glass-stoppered bottles. A set of nine compositions was prepared with an increment of 0.1 mole fraction per each system. The possible error in the mole fractions is estimated to be around 0.0001 in all cases.

Densities were measured with a capillary pycnometer of about $20 \mathrm{~cm}^{3}$ capacity. The pycnometers were calibrated with doubly distilled water at the experimental temperatures. The thermostats (Toshniwal, GL-15, and INSREF, 016 AP) were maintained constant to within $\pm 0.1 \mathrm{~K}$ at the desired temperatures as checked by means of a calibrated thermometer (Germany).

Viscosities were measured by means of Cannon Fenske viscometers (sizes 75, 100, and 150, ASTM D445, supplied by the Industrial Research Glassware Ltd., New Jersey). The kinetic energy corrections were made according to the recommended method (14). The other calibration and experimental details are given in our earlier papers (1-7). Standard errors in viscosity measurements were less than $\pm 0.2 \%$.

Refractive indices for the sodium-D line were measured with a thermostated Abbe refractometer (Bellingham and Stanley Ltd., London) with an error of less than 0.0001 unit. The prism assembly was circulated with water maintained at a constant temperature. However, these data were approximated to the fourth place (see Table II). Calibration checks of the refractometer were done routinely with the help of the test glass piece of known refractive index ($n_{D}=1.5159$) provided with the instrument. The reproducibility in the refractive index data was within $\pm 0.2-0.3 \%$.

The speed of sound was determined by using a variablepath single-crystal interferometer (Mittal Enterprises, New Delhi, model M-84). A crystal-controlled high-frequency generator was used to excite the transducer at a frequency of 1 MHz . The frequency was measured with an accuracy of

Table I. Comparison of Data with Literature Data for Pure Liquids at 298.5 K

	$\rho /\left(\mathrm{gm} \cdot \mathrm{cm}^{-3}\right)$			n_{D}	
\quad liquid	obsd	lit.		obsd	lit.
methyl alcohol	0.7868	$0.7864(40)$		1.3268	$1.3264(40)$
ethyl alcohol	0.7852	$0.7850(40)$		1.3595	$1.3592(40)$
1-propanol	0.8000	$0.7994(41)$		1.3834	$1.3834(42)$
2-propanol	0.7812	$0.7807(40)$		1.3753	$1.3753(40)$
1-butanol	0.8059	$0.8056(41)$		1.3971	$1.3973(42)$
2-methyl-1-propanol	0.7982	$0.7978(12)$		1.3938	$1.3939(12)$
1-pentanol	0.8112	$0.8109(30)$		1.4080	$1.4079(44)$
1-hexanol	0.8153	$0.8152(43)$		1.4160	$1.4158(44)$
1-heptanol	0.8197	$0.8190(41)$		1.4227	$1.4226(44)$
2-octanol	0.8168	$0.8171(12)$		1.4239	$1.4241(12)$
methyl acetoacetate	1.0720	$1.0724(12)$	1.4167	$1.4186(12)$	

1 in 10^{6} by using a digital frequency meter. The current variations across the transducer were observed on a microammeter. The interferometer cell was filled with the test liquid and was connected to the output terminal of the highfrequency generator through a shielded cable. Water was then circulated around the measuring cell from a thermostat maintained at the desired temperature. The other experimental details were given earlier (7). The accuracy of the instrument was checked by measuring the speed of sound of known liquids. Our value of $u\left(1255 \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)$ at 308.15 K for benzene compares well with the data ($1255 \mathrm{~m} \cdot \mathrm{~s}^{-1}$) of Nath and Dixit (15). Similarly, u at 298.15 K for benzene (1301 $\mathrm{m} \cdot \mathrm{s}^{-1}$) and toluene ($1306 \mathrm{~m} \cdot \mathrm{~s}^{-1}$) agree closely with the literature values of 1301 and $1306 \mathrm{~m} \cdot \mathrm{~s}^{-1}$, respectively, of Nath and Tripathi (16). The isentropic compressibilities were calculated as $k_{\mathrm{S}}=1 /\left(u^{2} \rho\right)$. The average uncertainty in k_{S} is around $\pm 0.01 \%$.

In all the property measurements triplicate experiments were performed at each temperature and composition. The averaged results for various systems are reported in Table II.

Results and Discussion

The results of excess molar volumes V^{E}, presented in Figure 1 , have been calculated as

$$
\begin{equation*}
V^{\mathrm{E}}=V_{\mathrm{m}}-V_{1} x_{1}-V_{2} x_{2} \tag{1}
\end{equation*}
$$

where V_{m} stands for the molar volume of the mixture, V_{1} and V_{2} refer to the molar volumes of the two components forming the mixture, and x_{1} and x_{2} are the mole fractions of components 1 and 2, respectively.
The observed V^{E} may be discussed in terms of several effects which may be arbitrarily divided into physical, chemical, and geometrical contributions. The physical interactions involve mainly dispersion forces giving a positive contribution. The chemical or specific interactions result in a volume decrease, and these include charge-transfer-type forces, i.e., forming and/or breaking up of H bonds and other complex-forming interactions. It is well known that alcohols exist as associated structures in the liquid state; this association may be through the H -bonding of their-OHgroups. Structural contributions arising from the geometrical fitting of one component into the other, due to differences in the molar volume and free volume between components, lead to negative contributions to V^{E}. With higher alcohols, the latter contribution is negligible, and association decreases with an increase in the chainlength of alcohols $(17,18)$. Therefore, mixtures of MAA with higher alcohols give larger V^{E} as compared to lower alcohols.
The higher alcohols possess less proton-donating ability than the lower ones (C_{1} or C_{2}), and effects of this kind of heteroassociation are smaller in their mixtures and not sufficient to outweigh the positive contributions to $V^{\mathbb{E}}$; thus,
the V^{E} vs x_{1} curves for 1-propanol and 1-butanol can be explained in terms of small differences in their protondonating abilities, thereby giving the positive values of $V^{\mathbb{E}}$. It is interesting to note that a considerable expansion of volume, i.e., $0.2 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$ (for 1-propanol) to $0.95 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$ (for 2-octanol) is observed. However, the negative V^{E} values do not seem to fall below $-0.4 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$ which suggests that, with methyl and ethyl alcohols, the effects due to heteroassociation (as observed in the cases of $\mathrm{C}_{3}-\mathrm{C}_{8}$ alcohol chains) may be canceled by breaking up of the self-associated aggregates of alcohols.
Excess properties of a number of binary mixtures containing alcohols of the type used here have been studied in the literature with a variety of other components. A direct comparison of our data with the literature is not possible in view of the nonavailability of the data for the present mixtures. However, one can, at best, compare the present results with those of some of the mixtures containing alcohols of the type used here.
Excess molar volumes of methylcyclohexane with 1-butanol, 1-pentanol, and 1-hexanol have been studied at 298.15 K by Alonso and Corrales (19). In this study, $V^{\mathbb{E}}$ is positive and decreases from 1-hexanol to 1-butanol. On the other hand, Rao and Naidu (20) observed higher V^{E} for 1-pentanol than for 1-butanol or 1-hexanol at 303.15 K in contrast to the results of Alonso and Corrales (19). Choudary et al. (21) measured V^{E} for mixtures of 1,1,2,2-tetrachloroethane with 1-alkanols $\left(\mathrm{C}_{3}-\mathrm{C}_{8}\right)$ at 303.15 K and found it to be negative in mirtures rich in alcohols and positive in mixtures containing higher contents of chloroalkane. This effect was attributed to the depolymerization of H -bonded alcohol aggregates, interstitial accommodation of halogenated hydrocarbon in the polymers of alcohols, and weak H bond interactions between unlike molecules. A similar conclusion was arrived by Naorem and Suri (22) from a study of excess enthalpies of mixtures of furfural (which also contains a ketonic group) with aliphatic alcohols ($\mathrm{C}_{1}-\mathrm{C}_{4}$), wherein the H^{E} results are positive for all the mixtures and increase systematically with the chain length of alcohols. This effect was attributed to the structure breaking of polymer aggregates of alcohols and furfural molecules. Additional support for the increased V^{E} in the cases of alcohol-containing mixtures comes from other similar studies (23-25).

The effect of temperature on V^{E} is noteworthy. There is a systematic increase in V^{E} with a rise in temperature for all the mixtures. However, such changes are very small, and thus these data are not included in Figure 1 to avoid the heavy conjestion of points. This increase in $V^{\mathbb{E}}$ with temperature is also expected from the theoretical considerations and in accordance with the published data (26-29).

Though the term excess viscosity has been used in the literature (30-32), its use is not acceptable (33). Hence, we prefer to calculate the viscosity deviations $\Delta \eta$ from the results of viscosities of binary mixtures as

$$
\begin{equation*}
\Delta \eta=\eta_{\mathrm{m}}-\eta_{1} x_{1}-\eta_{2} x_{2} \tag{2}
\end{equation*}
$$

The values of the changes in viscosity calculated from eq 2 are presented in Figure 2. There is a clear trend in $\Delta \eta$ values for all the mixtures. The $\Delta \eta$ values are negative which generally decrease with increasing size of the alcohol molecules. However, discrepancies are observed in some cases. Mixtures of MAA with alcohols show the trend in $\Delta \eta$ values as ethyl alcohol $>$ methyl alcohol >1-propanol >2-propanol >1-butanol >1-pentanol >2-methyl-1-propanol >1-hexanol >1-heptanol >2-octanol. The molecular size effect of alcohols from 1-hexanol to 2 -octanol is quite considerable on the values of $\Delta \eta$. It changes from -1.3 to $-1.8 \mathrm{mPa} \cdot \mathrm{s}$, whereas for other alcohols, namely, $\mathrm{C}_{1}-\mathrm{C}_{4}$, the change in $\Delta \eta$ is only from -0.22

Table II. Densities ρ, Viscosities η, Refractive Indices n_{D}, and Speeds of Sound u for Binary Mixtures

x_{1}	$\rho /\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	$\eta /(\mathrm{mPa} \cdot \mathrm{s})$	n_{D}	u / mg^{-1}	x_{1}	$\rho /\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	$\eta /(\mathrm{mPa} \cdot \mathrm{s})$	n_{D}	u / ms^{-1}

Methyl Acetoacetate (1) + Methyl Alcohol (2)

298.15 K									
0.0000	0.7868	0.542	1.3268	1102	0.6056	1.0206	1.064	1.4006	1332
0.1017	0.8565	0.599	1.3493	1169	0.7015	1.0363	1.163	1.4055	1349
0.1887	0.9008	0.662	1.3633	1208	0.8024	1.0502	1.288	1.4095	1361
0.3013	0.9450	0.757	1.3775	1253	0.8994	1.0618	1.413	1.4135	1373
0.4048	0.9765	0.858	1.3866	1283	1.0000	1.0723	1.566	1.4164	1383
0.5038	1.0004	0.954	1.3944	1310					
303.15 K									
0.0000	0.7822	0.506	1.3245	1086	0.6056	1.0152	0.978	1.3989	1313
0.1017	0.8517	0.563	1.3476	1149	0.7015	1.0308	1.066	1.4035	1332
0.1887	0.8959	0.618	1.3612	1189	0.8024	1.0447	1.176	1.4077	1346
0.3013	0.9399	0.704	1.3757	1235	0.8994	1.0561	1.288	1.4114	1357
0.4048	0.9715	0.793	1.3853	1267	1.0000	1.0667	1.422	1.4141	1361
0.5038	0.9951	0.879	1.3927	1291					
308.15 K									
0.0000	0.7772	0.474	1.3223	1073	0.6056	1.0096	0.902	1.3967	1295
0.1017	0.8465	0.525	1.3454	1135	0.7015	1.0255	0.984	1.4014	1312
0.1887	0.8908	0.578	1.3591	1173	0.8024	1.0390	1.082	1.4056	1324
0.3013	0.9358	0.657	1.3733	1215	0.8994	1.0506	1.180	1.4093	1335
0.4048	0.9659	0.737	1.3833	1248	1.0000	1.0612	1.298	1.4116	1343
0.5038	0.9895	0.815	1.3909	1274					
Methyl Acetoacetate (1) + Ethyl Alcohol (2)									
298.15 K									
0.0000	0.7852	1.074	1.3595	1145	0.6070	0.9988	1.121	1.4020	1330
0.1051	0.8356	0.960	1.3694	1188	0.7033	1.0194	1.202	1.4056	1340
0.2040	0.8783	0.942	1.3785	1216	0.8022	1.1385	1.300	1.4101	1364
0.3085	0.9182	0.965	1.3854	1252	0.9020	1.0565	1.422	1.4131	1368
0.4046	0.9460	0.995	1.3923	1276	1.0000	1.0725	1.564	1.4172	1383
0.5070	0.9742	1.057	1.3970	1297					
303.15 K									
0.0000	0.7811	0.979	1.3573	1121	0.6070	0.9935	1.027	1.4001	1308
0.1051	0.8312	0.879	1.3674	1170	0.7033	1.0141	1.099	1.4047	1321
0.2040	0.8735	0.866	1.3767	1199	0.8022	1.0334	1.187	1.4090	1341
0.3085	0.9131	0.883	1.3843	1235	0.9020	1.0509	1.294	1.4111	1354
0.4046	0.9410	0.913	1.3901	1259	1.0000	1.0671	1.421	1.4147	1361
0.5070	0.9691	0.968	1.3949	1278					
308.15 K									
0.0000	0.7767	0.893	1.3556	1103	0.6070	0.9880	0.946	1.3988	1293
0.1051	0.8266	0.806	1.3660	1151	0.7033	1.0087	1.011	1.4022	1305
0.2040	0.8686	0.798	1.3745	1184	0.8022	1.0278	1.092	1.4063	1322
0.3085	0.9081	0.814	1.3821	1216	0.9020	1.0456	1.186	1.4095	1334
0.4046	0.9356	0.841	1.3884	1240	1.0000	1.0616	1.298	1.4126	1343
0.5070	0.9635	0.892	1.3924	1261					

Methyl Acetoacetate (1) + 1-Propanol (2)

298.15 K									
0.0000	0.8000	1.900	1.3834	1204	0.6090	0.9865	1.238	1.4053	1321
0.1028	0.8377	1.497	1.3875	1214	0.7057	1.0097	1.278	1.4085	1337
0.2021	0.8711	1.333	1.3916	1250	0.8054	1.0322	1.339	1.4126	1359
0.3067	0.9041	1.253	1.3956	1266	0.9036	1.0528	1.501	1.4137	1372
0.4070	0.9334	1.221	1.3987	1284	1.0000	1.0725	1.564	1.4172	1383
0.5069	0.9606	1.219	1.4027	1300					
303.15 K									
0.0000	0.7959	1.681	1.3814	1179	0.6090	0.9814	1.123	1.4032	1304
0.1028	0.8334	1.337	1.3856	1204	0.7057	1.0044	1.163	1.4069	1319
0.2021	0.8665	1.213	1.3898	1230	0.8054	1.0270	1.217	1.4102	1339
0.3067	0.8993	1.128	1.3934	1248	0.9036	1.0474	1.295	1.4116	1356
0.4070	0.9284	1.102	1.3975	1264	1.0000	1.0671	1.421	1.4147	1361
0.5069	0.9557	1.104	1.4003	1283					
308.15 K									
0.0000	0.7919	1.488	1.3799	1163	0.6090	0.9763	1.027	1.4019	1283
0.1028	0.8288	1.198	1.3831	1177	0.7057	0.9991	1.062	1.4046	1304
0.2021	0.8618	1.096	1.3876	1212	0.8054	1.0215	1.114	1.4126	1319
0.3067	0.8945	1.024	1.3916	1226	0.9036	1.0420	1.183	1.4101	1334
0.4070	0.9234	1.003	1.3957	1246	1.0000	1.0616	1.298	1.4126	1343

Table II. (Continued)

x_{1}	$\rho /\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	$\eta /(\mathrm{mPa} \cdot \mathrm{s})$	n_{D}	u / mg^{-1}	x_{1}	$\rho /\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	$\eta /(\mathrm{mPa} \cdot \mathrm{s})$	n_{D}	u / mg^{-1}

x_{1}	$\rho /\left(\mathrm{g}^{\prime} \mathrm{cm}^{-2}\right)$	$\eta /(\mathrm{mPa} \cdot \mathrm{s})$	n	/ms	x_{1}	p/(${ }^{\text {cm }}$	(mPas)	n	ms
Methyl Acetoacetate (1) +2 -Propanol (2)									
298.15 K									
0.0000	0.7812	2.012	1.3753	1141	0.6057	0.9783	1.189	1.4027	1296
0.1028	0.8203	1.457	1.3806	1170	0.7079	1.0046	1.243	1.4062	1317
0.2052	0.8569	1.267	1.3855	1199	0.8053	1.0281	1.315	1.4102	1344
0.3051	0.8903	1.195	1.3900	1221	0.9038	1.0510	1.419	1.4129	1363
0.4085	0.9225	1.168	1.3944	1260	1.0000	1.0725	1.564	1.4172	1383
0.5084	0.9513	1.160	1.3986	1270					
303.15 K									
0.0000	0.7769	1.724	1.3737	1122	0.6057	0.9728	1.080	1.4004	1278
0.1028	0.8157	1.279	1.3784	1149	0.7079	0.9992	1.127	1.4046	1302
0.2052	0.8519	1.124	1.3830	1182	0.8053	1.0228	1.197	1.4081	1324
0.3051	0.8853	1.068	1.3877	1202	0.9038	1.0457	1.287	1.4105	1342
0.4085	0.9173	1.051	1.3926	1241	1.0000	1.0671	1.421	1.4147	1361
0.5084	0.9461	1.049	1.3974	1252					
308.15 K									
0.0000	0.7726	1.485	1.3710	1097	0.6057	0.9675	1.985	1.3980	1261
0.1028	0.8101	1.023	1.3759	1132	0.7079	0.9938	1.032	1.4026	1285
0.2052	0.8469	1.006	1.3810	1154	0.8053	1.0174	1.094	1.4057	1315
0.3051	0.8802	1.963	1.3853	1190	0.9038	1.0401	1.133	1.4085	1325
0.4085	0.9121	1.952	1.3901	1222	1.0000	1.0616	1.298	1.4126	1343
0.5084	0.9409	1.956	1.3952	1227					

Methyl Acetoacetate (1) +1 -Butanol (2)

298.15 K									
0.0000	0.8059	2.484	1.3971	1240	0.6074	0.9743	1.311	1.4087	1316
0.1022	0.8361	1.886	1.3984	1250	0.7044	0.9997	1.321	1.4111	1330
0.2039	0.8652	1.628	1.4005	1259	0.8051	1.0249	1.368	1.4127	1352
0.3060	0.8940	1.465	1.4031	1272	0.9038	1.0492	1.436	1.4148	1365
0.4081	0.9220	1.378	1.4053	1286	1.0000	1.0725	1.564	1.4172	1383
0.5110	0.9497	1.328	1.4065	1301					
303.15 K									
0.0000	0.8020	2.174	1.3954	1223	0.6074	0.9692	1.183	1.4071	1300
0.1022	0.8318	1.669	1.3968	1230	0.7044	0.9945	1.197	1.4107	1315
0.2039	0.8607	1.447	1.3987	1240	0.8051	1.0196	1.211	1.4105	1332
0.3060	0.8893	1.308	1.4016	1255	0.9038	1.0439	1.302	1.4127	1346
0.4081	0.9172	1.235	1.4031	1267	1.0000	1.0671	1.421	1.4147	1361
0.5110	0.9447	1.197	1.4046	1279					
308.15 K									
0.0000	0.7981	1.913	1.3929	1208	0.6074	0.9642	1.080	1.4068	1281
0.1022	0.8276	1.487	1.3952	1216	0.7044	0.9893	1.093	1.4075	1296
0.2039	0.8564	1.301	1.3968	1222	0.8051	1.0143	1.131	1.4086	1315
0.3060	0.8848	1.195	1.3991	1236	0.9038	1.0384	1.190	1.4106	1332
0.4081	0.9124	1.118	1.4008	1251	1.0000	1.0616	1.298	1.4126	1343
0.5110	0.9397	1.090	1.4028	1262					

Methyl Acetoacetate (1) +2 -Methyl-1-propanol (2)

298.15 K									
0.0000	0.7982	3.247	1.3938	1191	0.6057	0.9711	1.352	1.4076	1298
0.1046	0.8295	2.240	1.3962	1205	0.7026	0.9969	1.350	1.4099	1323
0.2052	0.8591	1.810	1.3985	1224	0.8059	1.0236	1.380	1.4121	1344
0.3095	0.8883	1.598	1.4004	1240	0.9020	1.0477	1.449	1.4143	1364
0.4094	0.9176	1.463	1.4029	1261	1.0000	1.0725	1.564	1.4172	1383
0.5075	0.9449	1.385	1.4054	1279					
303.15 K									
0.0000	0.7943	2.745	1.3914	1172	0.6057	0.9661	1.221	1.4053	1281
0.1046	0.8252	1.944	1.3939	1191	0.7026	0.9916	1.223	1.4077	1302
0.2052	0.8548	1.591	1.3962	1202	0.8059	1.0181	1.251	1.4100	1324
0.3095	0.8830	1.412	1.3985	1223	0.9020	1.0427	1.312	1.4120	1346
0.4094	0.9127	1.303	1.4001	1241	1.0000	1.0671	1.421	1.4147	1361
0.5075	0.9396	1.241	1.4035	1264					
308.15 K									
0.0000	0.7903	2.316	1.3892	1154	0.6057	0.9607	1.108	1.4034	1262
0.1046	0.8210	1.696	1.3915	1173	0.7026	0.9863	1.114	1.4054	1283
0.2052	0.8502	1.407	1.3939	1186	0.8059	1.0128	1.143	1.4079	1309
0.3095	0.8782	1.257	1.3963	1203	0.9020	1.0371	1.198	1.4101	1324
0.4094	0.9077	1.170	1.3987	1221	1.0000	1.0616	1.298	1.4126	1343
0.5075	0.9346	1.124	1.4012	1244					

Table II. (Continued)

x_{1}	$\rho /\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	$\eta /(\mathrm{mPa}-\mathrm{g})$	$n_{\text {d }}$	u / ms^{-1}	x_{1}	$\rho /\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	$\eta /(\mathrm{mPa} \cdot \mathrm{s})$	$n_{\text {D }}$	u / ms^{-1}
Methyl Acetoacetate (1) + 1-Pentanol (2)									
298.15 K									
0.0000	0.8112	3.286	1.4080	1277	0.6099	0.9658	1.439	1.4117	1322
0.1031	0.8361	2.467	1.4086	1279	0.7075	0.9920	1.408	1.4133	1332
0.2056	0.8618	2.053	1.4087	1281	0.8063	1.0187	1.408	1.4140	1351
0.3072	0.8877	1.796	1.4092	1287	0.9019	1.0477	1.449	1.4154	1367
0.4083	0.9134	1.637	1.4099	1296	1.0000	1.0725	1.564	1.4172	1383
0.5091	0.9395	1.520	1.4112	1308					
303.15 K									
0.0000	0.8074	2.833	1.4062	1263	0.6099	0.9608	1.294	1.4095	1303
0.1031	0.8322	2.156	1.4063	1261	0.7075	0.9869	1.268	1.4110	1317
0.2056	0.8574	1.809	1.4064	1266	0.8063	1.0134	1.275	1.4116	1332
0.3072	0.8834	1.588	1.4068	1270	0.9019	1.0391	1.313	1.4134	1347
0.4083	0.9086	1.453	1.4079	1276	1.0000	1.0671	1.421	1.4147	1361
0.5091	0.9347	1.356	1.4089	1288					
308.15 K									
0.0000	0.8038	2.441	1.4036	1246	0.6099	0.9560	1.175	1.4077	1284
0.1031	0.8281	1.903	1.4043	1245	0.7075	0.9816	1.156	1.4086	1295
0.2056	0.8532	1.606	1.4042	1247	0.8063	1.0081	1.164	1.4093	1314
0.3072	0.8789	1.419	1.4047	1251	0.9019	1.0339	1.201	1.4111	1328
0.4083	0.9041	1.300	1.4060	1263	1.0000	1.0616	1.298	1.4126	1343
0.5091	0.9298	1.223	1.4068	1272					
Methyl Acetoacetate (1) + 1-Hexanol (2)									
298.15 K									
0.0000	0.8153	4.317	1.4160	1306	0.6081	0.9574	1.609	1.4147	1319
0.1036	0.8367	3.185	1.4158	1303	0.7063	0.9845	1.521	1.4148	1334
0.2040	0.8586	2.588	1.4151	1301	0.8060	1.0126	1.473	1.4154	1349
0.3064	0.8822	2.204	1.4148	1304	0.9023	1.0413	1.478	1.4162	1361
0.4075	0.9063	1.947	1.4145	1307	1.0000	1.0725	1.564	1.4172	1383
0.5096	0.9319	1.749	1.4145	1312					
303.15 K									
0.0000	0.8118	3.670	1.4139	1289	0.6081	0.9526	1.442	1.4128	1306
0.1036	0.8331	2.760	1.4138	1287	0.7063	0.9791	1.364	1.4130	1315
0.2040	0.8547	2.257	1.4131	1283	0.8060	1.0074	1.330	1.4134	1330
0.3064	0.8777	1.932	1.4128	1285	0.9023	1.0361	1.340	1.4137	1346
0.4075	0.9022	1.720	1.4125	1290	1.0000	1.0671	1.421	1.4147	1361
0.5096	0.9272	1.547	1.4125	1296					
308.15 K									
0.0000	0.8081	3.130	1.4111	1273	0.6081	0.9478	1.302	1.4104	1286
0.1036	0.8290	2.409	1.4114	1268	0.7063	0.9741	1.238	1.4106	1299
0.2040	0.8505	1.989	1.4110	1267	0.8060	1.0023	1.211	1.4111	1310
0.3064	0.8736	1.711	1.4106	1268	0.9023	1.0307	1.222	1.4116	1327
0.4075	0.8975	1.527	1.4105	1272	1.0000	1.0616	1.298	1.4126	1343
0.5096	0.9225	1.387	1.4104	1275					
Methyl Acetoacetate (1) + 1-Heptanol (2)									
298.15 K									
0.0000	0.8197	5.690	1.4227	1330	0.6072	0.9508	1.842	1.4175	1326
0.1016	0.8377	4.066	1.4218	1321	0.7071	0.9781	1.663	1.4168	1337
0.2071	0.8582	3.167	1.4205	1318	0.8059	1.0073	1.546	1.4167	1350
0.3081	0.8793	2.651	1.4195	1315	0.9033	1.0386	1.512	1.4163	1361
0.4096	0.9020	2.278	1.4189	1317	1.0000	1.0723	1.566	1.4164	1383
0.5099	0.9262	2.012	1.4185	1321					
303.15 K									
0.0000	0.8160	4.771	1.4210	1313	0.6072	0.9406	1.624	1.4154	1309
0.1016	0.8342	3.465	1.4195	1304	0.7071	0.9732	1.485	1.4146	1314
0.2071	0.8542	2.734	1.4187	1302	0.8059	1.0022	1.393	1.4143	1330
0.3081	0.8752	2.298	1.4177	1301	0.9033	1.0331	1.366	1.4141	1347
0.4096	0.8976	1.981	1.4166	1300	1.0000	1.0667	1.422	1.4141	1361
0.5099	0.9214	1.754	1.4161	1304					
308.15 K									
0.0000	0.8125	4.002	1.4185	1295	0.6072	0.9411	1.452	1.4135	1289
0.1016	0.8302	2.970	1.4179	1287	0.7071	0.9681	1.337	1.4130	1300
0.2071	0.8502	2.357	1.4165	1284	0.8059	0.9970	1.264	1.4123	1315
0.3081	0.8709	1.998	1.4154	1280	0.9033	1.0277	1.245	1.4120	1324
0.4096	0.8933	1.733	1.4145	1282	1.0000	1.0612	1.298	1.4116	1343
0.5099	0.9167	1.545	1.4138	1285					

Table II. (Continued)

x_{1}	$\rho /\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	$\eta /(\mathrm{mPa} \cdot \mathrm{s})$	$n_{\text {D }}$	u / ms^{-1}	x_{1}	$\rho /\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	$\eta /(\mathrm{mPa} \cdot \mathrm{s})$	$n_{\text {D }}$	u / ms^{-1}
Methyl Acetoacetate (1) +2 -Octanol (2)									
298.15 K									
0.0000	0.8168	5.929	1.4239	1309	0.6079	0.9415	1.900	1.4178	1318
0.1041	0.8337	4.231	1.4227	1306	0.7081	0.9695	1.699	1.4171	1328
0.2072	0.8516	3.315	1.4214	1304	0.8070	1.0003	1.574	1.4167	1344
0.3091	0.8713	2.753	1.4205	1302	0.9036	1.0342	1.520	1.4166	1358
0.4101	0.8928	2.358	1.4192	1308	1.0000	1.0723	1.566	1.4164	1383
0.5107	0.9164	2.075	1.4187	1309					
303.15 K									
0.0000	0.8131	4.794	1.4214	1293	0.6079	0.9363	1.661	1.4155	1298
0.1041	0.8295	3.511	1.4205	1288	0.7081	0.9645	1.506	1.4150	1309
0.2072	0.8475	2.796	1.4191	1285	0.8070	0.9952	1.413	1.4143	1324
0.3091	0.8669	2.344	1.4180	1284	0.9036	1.0287	1.374	1.4142	1341
0.4101	0.8882	2.026	1.4168	1286	1.0000	1.0667	1.422	1.4141	1361
0.5107	0.9118	1.796	1.4162	1289					
308.15 K									
0.0000	0.8092	3.909	1.4193	1273	0.6079	0.9314	1.476	1.4135	1279
0.1041	0.8253	2.939	1.4184	1272	0.7081	0.9595	1.352	1.4129	1291
0.2072	0.8432	2.377	1.4169	1270	0.8070	0.9902	1.279	1.4121	1307
0.3091	0.8626	2.015	1.4161	1269	0.9036	1.0235	1.251	1.4119	1323
0.4101	0.8839	1.756	1.4147	1269	1.0000	1.0612	1.298	1.4116	1343
0.5107	0.9070	1.567	1.4140	1274					

Figure 1. Variation of the excess molar volume with mole fraction at 298.15 K . Symbols: MAA with (\diamond) methylalcohol; ($\mathbf{\nabla}$) ethyl alcohol; (O) 1-propanol; (Δ) 2-propanol; (D) 1butanol; (\bullet) 2-methyl-1-propanol; ($\boldsymbol{\nabla}$) 1-pentanol; ($(\boldsymbol{\Delta}$) 1-hexanol; (\dagger) 1-heptanol; (■) 2-octanol.
to $-1.1 \mathrm{mPa} \cdot \mathrm{s}$. The minima of the $\Delta \eta$ versus x_{1} curves occur in the low mole fraction region of MAA. In this region, the endothermic enthalpy of mixing may cause this effect due to the breaking of H bonds between alcohol molecules as they disperse throughout the mixtures. This endothermic effect outweighs the exothermic formation of the MAA-lower alcohol interactions. This should result in more negative $\Delta \eta$ values for higher alcohols than for the lower ones. The effect of a temperature increase is, in all cases, to break interactions and permit an easier flow of the liquid. The result is a net higher $\Delta \eta$ at higher temperatures. This is indeed the case with the present systems.

The changes in isentropic compressibilities, Δk_{S}, have been calculated from the isentropic compressibility data on mix-

Figure 2. Dependence of the molar viscosity deviation on mole fraction at 298.15 K . Symbols have the same meaning as in Figure 1.
tures and the pure components by using

$$
\begin{equation*}
\Delta k_{\mathrm{S}}=k_{\mathrm{S}}^{\operatorname{mix}}-k_{\mathrm{S}, 1} \phi_{1}-k_{\mathrm{S}, 2} \phi_{2} \tag{3}
\end{equation*}
$$

where ϕ_{1} is the volume fraction of the i th component of the mixture and is defined as

$$
\begin{equation*}
\phi_{i}=x_{i} V_{i} / \sum_{i=1}^{2} x_{i} V_{i} \tag{4}
\end{equation*}
$$

The plots of Δk_{s} versus ϕ_{1} are shown in Figure 3. It is observed that the Δk_{S} results vary systematically with the chain length of alcohols. For some mixtures, namely, MAA with $\mathrm{C}_{1}-\mathrm{C}_{4}$, the Δk_{S} values are negative, whereas with others, i.e., $\mathrm{C}_{5}-\mathrm{C}_{8}$, the Δk_{S} values are positive. However, for 1-heptanol, the positive values of Δk_{S} are higher than those of 2-octanol-containing mirtures. These values show the trend methyl alcohol < ethyl alcohol < 2-propanol < 1-propanol < 2-methyl-1-propanol < 1-butanol < 1-pentanol < 1-hexanol <2-octanol < 1-heptanol. It is to be noted here that Δk_{S}

Table III. Coefficients of Derived Quantities

Y'/unit	t/K	a_{0}	a_{1}	a_{2}	a_{3}	σ	$Y^{\text {E/ }}$ unit	t/K	a_{0}	a_{1}	a_{2}	a_{3}	σ
Methyl Acetoacetate (1) + Methyl Alcohol (2)													
$V \mathrm{E} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	298.15	-1.583	-0.453	-0.399	-0.008	0.006	$10^{11} \Delta k_{8} / \mathrm{Pa}^{-1}$	298.15	-29.921	-2.592	-12.870	-18.347	0.135
	303.15	-1.626	-0.495	-0.506	-0.179	0.012		303.15	-31.296	-1.611	-7.111	-18.683	0.086
	308.15	-1.692	-0.879	0.157	0.123	0.027		308.15	-31.218	-0.083	-16.083	-22.771	0.115
$\Delta \eta /(\mathrm{mPa} \cdot \mathrm{s})$	298.15	-0.413	0.017	-0.197	-0.003	0.003	$R^{\mathrm{E}} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	298.15	1.506	0.330	-0.299	-0.031	0.013
	303.15	-0.350	0.012	-0.149	0.034	0.003							
	308.15	-0.295	0.015	-0.118	-0.002	0.001							
Methyl Acetoacetate (1) + Ethyl Alcohol (2)													
$V^{\mathrm{E}} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	298.15	-0.468	-1.234	2.399	1.918	0.064	$10^{11} \Delta k_{\mathrm{B}} / \mathrm{Pa}^{-1}$	298.15	-19.925	-3.041	2.430	-15.702	0.973
	303.15	-0.404	-1.072	2.062	2.089	0.059		303.15	-25.967	-4.517	-2.821	-16.751	0.359
	308.15	-0.298	-1.179	2.330	1.701	0.066		308.15	-27.631	-5.160	0.422	-12.620	0.370
$\Delta \eta /(\mathrm{mPa} \cdot \mathrm{s})$	298.15	-1.071	-0.197	-0.513	-0.370	0.004	$R^{\mathrm{E}} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	298.15	2.027	0.136	1.030	0.029	0.035
	303.15	-0.944	-0.190	-0.443	-0.288	0.003							
	308.15	-0.830	-0.171	-0.367	-0.266	0.004							
Methyl Acetoacetate (1) + 1-Propanol (2)													
$V^{\mathrm{E}} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	298.15	0.813	0.226	-0.259	0.342	0.010	$10^{11} \Delta k_{\mathrm{s}} / \mathrm{Pa}^{-1}$	298.15	-11.115	-8.763	34.316	17.707	0.345
	303.15	0.880	0.352	-0.612	0.406	0.018		303.15	-13.998	-5.833	9.559	-11.818	0.229
	308.15	0.985	0.353	-0.279	0.685	0.009		308.15	-13.353	-6.392	25.578	9.383	0.450
$\Delta \eta /(\mathrm{mPa} \cdot \mathrm{s})$	298.15	-2.065	-0.591	-0.984	-1.684	0.016	$R^{\mathrm{E}} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	298.15	1.727	0.358	-0.180	-0.063	0.033
	303.15	-1.772	-0.668	-1.094	-0.568	0.012							
	308.15	-1.529	-0.551	-0.928	-0.464	0.010							
Methyl Acetoacetate (1) + 2-Propanol (2)													
$V^{\mathrm{E}} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	298.15	0.926	0.122	0.093	0.989	0.013	$10^{11} \Delta k_{\mathrm{s}} / \mathrm{Pa}^{-1}$	298.15	-18.348	-5.437	5.789	1.346	0.571
	303.15	1.075	0.110	0.325	0.792	0.011		303.15	-20.319	-5.460	8.783	4.547	0.562
	308.15	1.156	0.249	0.252	1.159	0.010		308.15	-23.154	-6.589	9.182	-10.884	0.904
$\Delta \eta /(\mathrm{mPa} \cdot \mathrm{s})$	298.15	-2.457	-1.026	-1.949	-1.680	0.014	$R^{\mathrm{E}} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	298.15	1.629	0.254	0.495	-0.068	0.018
	303.15	-2.049	-0.835	-1.595	-1.278	0.012							
	308.15	-1.643	-0.509	-2.041	-1.762	0.043							
(Methyl Acetoacetate (1) + 1-Butanol (2)													
$V^{\mathrm{E}} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	298.15	1.480	0.081	0.256	0.130	0.023	$10^{11} \Delta k_{\mathrm{B}} / \mathrm{Pa}^{-1}$	298.15	-3.315	1.989	-2.011	-3.067	0.142
	303.15	1.609	0.080	0.512	0.160	0.024		303.15	-2.911	1.970	2.569	2.705	0.217
	308.15	1.704	0.106	0.421	0.277	0.018		308.15	-2.655	3.860	2.686	-5.133	0.186
$\Delta \boldsymbol{\eta} /(\mathrm{mPa} \cdot \mathrm{s})$	298.15	-2.738	-1.074	-1.720	-1.217	0.014	$R^{\mathrm{E}} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	298.15	1.082	0.291	-0.441	-0.723	0.017
	303.15	-2.366	-0.880	-1.570	-0.898	0.013							
	308.15	-2.030	-0.706	-1.229	-0.873	0.012							
Methyl Acetoacetate (1) + 2-Methyl-1-propanol (2)													
$V^{\mathrm{E}} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	298.15	1.456	0.882	-1.090	0.633	0.045	$10^{11} \Delta k_{8} / \mathrm{Pa}^{-1}$	298.15	-8.287	0.981	4.118	-0.806	0.174
	303.15	1.684	1.122	-1.289	0.340	0.066		303.15	-8.874	4.590	-5.540	-7.253	0.233
	308.15	1.833	1.254	-1.548	0.291	0.065		308.15	-9.077	5.225	-8.908	-11.627	0.185
$\Delta \eta /(\mathrm{mPa} \cdot \mathrm{s})$	298.15	-4.000	-2.085	-2.986	-2.377	0.017	$R^{\mathrm{E} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)}$	298.15	1.018	0.215	0.316	-0.164	0.007
	303.15	-3.300	-1.699	-2.344	-1.680	0.013							
	308.15	-2.505	-0.740	-2.150	-2.317	0.088							
Methyl Acetoacetate (1) + 1-Pentanol (2)													
$V \mathrm{E} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	298.15	2.116	0.299	0.196	1.326	0.027	$10^{11} \Delta k_{\mathrm{s}} / \mathrm{Pa}^{-1}$	298.15	1.487	3.812	-0.488	2.600	0.131
	303.15	2.244	0.253	-0.293	1.278	0.014		303.15	2.212	5.501	-0.398	-0.191	0.148
	308.15	2.402	0.185	0.145	1.279	0.008		308.15	2.516	4.494	2.037	0.436	0.183
$\Delta \boldsymbol{\eta} /(\mathrm{mPa} \cdot \mathrm{s})$	298.15	-3.557	-1.439	-2.201	-1.417	0.012	$R^{\mathrm{E}} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	298.15	0.092	-0.131	0.686	0.121	0.014
	303.15	-3.030	-1.199	-1.773	-1.038	0.010							
	308.15	-2.548	-0.987	-1.316	-0.608	0.006							
Methyl Acetoacetate (1) + 1-Hexanol (2)													
$V^{\mathrm{E}} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	298.15	2.595	0.256	-0.254	1.291	0.014	$10^{11} \Delta k_{8} / \mathrm{Pa}^{-1}$	298.15	5.002	3.334	-2.363	1.067	0.164
	303.15	2.781	0.037	0.057	0.980	0.026		303.15	4.776	4.445	-0.245	-1.003	0.111
	308.15	2.897	0.072	0.175	1.211	0.012		308.15	5.722	4.241	0.682	-0.620	0.167
$\Delta \boldsymbol{\eta} /(\mathrm{mPa} \cdot \mathrm{s})$	298.15	-4.664	-2.096	-2.820	-1.755	0.012	$R^{\mathrm{E}} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	298.15	-1.033	0.012	0.072	0.578	0.006
	303.15	-3.895	-1.700	-2.184	-1.196	0.009							
	308.15	-3.235	-1.379	-1.607	-0.642	0.006							
Methyl Acetoacetate (1) + 1-Heptanol (2)													
$V^{\mathrm{E}} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	298.15	3.031	-0.025	0.376	1.403	0.022	$10^{11} \Delta k_{8} / \mathrm{Pa}^{-1}$	298.15	6.990	4.803	-1.921	6.510	0.091
	303.15	3.161	0.137	-0.351	0.914	0.018		303.15	7.271	1.245	8.409	-1.567	0.135
	308.15	3.333	-0.033	0.489	1.320	0.015		308.15	7.648	5.434	-0.427	2.422	0.174
$\Delta \eta /(\mathrm{mPa} \cdot \mathrm{s})$	298.15	-6.278	-3.489	-4.324	-2.277	0.022	$R^{\mathrm{E}} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	298.15	-2.095	-0.260	0.270	0.277	0.013
	303.15	-5.196	-2.787	-3.286	-1.641	0.021							
	308.15	-4.266	-2.309	-2.466	-0.923	0.017							
Methyl Acetoacetate (1) + 2-Octanol (2)													
$V^{\mathrm{E}} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	298.15	3.798	0.324	-1.240	0.823	0.022	$10^{11} \Delta k_{8} / \mathrm{Pa}^{-1}$	298.15	5.649	4.626	-3.424	2.922	0.160
	303.15	4.021	0.245	-0.482	1.251	0.018		303.15	6.661	5.829	-0.343	0.523	0.041
	308.15	4.093	0.022	0.275	1.181	0.014		308.15	6.041	4.952	-3.246	-5.278	0.117
$\Delta \eta /(\mathrm{mPa} \cdot \mathrm{s})$	298.15	-6.485	-3.709	-4.283	-1.973	0.023	$R^{\mathrm{E} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)}$	298.15	-3.393	-0.320	-0.167	0.367	0.008
	303.15	-5.083	-2.765	-3.052	-1.235	0.018							
	308.15	-3.990	-2.122	-2.157	-0.601	0.017							

Figure 3. Variation of the deviation in isentropic compressibility with volume fraction at 298.15 K . Symbols have the same meaning as in Figure 1.
values of the branched-chain alcohols are smaller than those of their straight-chain homologues. Such effects have also been observed earlier by Karunakar et al. (34) for mixtures of benzonitrile with aliphatic alcohols and also by others (35). It has been reported that Δk_{s} becomes increasingly negative as the strength of the interaction increases (36). The maximum negative Δk_{S} as obtained in the case of the MAA + methyl alcohol mixture supports this conjecture. With higher alcohols, however, Δk_{S} becomes less negative. This suggests somewhat less of an interaction of MAA with such alcohols.

Isentropic compressibilities of mixtures of 1-chlorobutane with normal and branched alcohols have also been reported by Chandramouli et al. $(37,38)$. The positive Δk_{s} has been explained in terms of (i) dissociation of self-associated alcohols and chlorobutane and (ii) interstitial accommodation of chloroalkane molecules in the aggregates of alcohols and weak hydrogen bond interactions between unlike molecules. The former effect contributes to the positive deviations in Δk_{S}, while the latter effect contributes to the negative deviation in Δk_{s}. However, the actual value of the deviation depends upon the relative strengths of the two opposing effects. The positive Δk_{S} suggests that the first effect is stronger than the second. On the whole, the strength of bonding is expected to decrease with an increase in the chain length of alcohols, and the present results of $V^{\mathrm{E}}, \Delta \eta$, and Δk_{S} corroborate this fact.

Systematic variations of excess quantities with the chain length of alcohols prompted us to develop empirical relations for $V^{\mathbb{E}}, \Delta \eta$, and Δk_{S} data at equimolar compositions to give the following relation:

$$
\begin{equation*}
V^{£}\left(x_{1} \simeq 0.5\right)=1.625-\frac{9.283}{C_{n}+2}+\frac{11.143}{\left(C_{n}+2\right)^{2}}-\frac{4.408}{\left(C_{n}+2\right)^{3}} \tag{5}
\end{equation*}
$$

with $\sigma=0.019 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$. Here, C_{n} represents the number of carbon atoms of straight-chain alcohols. The branched alcohols are not considered here. For 1-heptanol with $C_{n}=$ 7 , eq 5 gives $V^{\mathrm{E}}=0.7254 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$ at $x_{1} \simeq 0.5$, while the observed $V^{\mathbb{E}}$ is $0.7238 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$. Similarly, for $\Delta \eta$ and Δk_{S},

Figure 4. Dependence of the deviation in molar refraction R^{E} on volume fraction at 298.15 K . Symbols have the same meaning as in Figure 1.
we get

$$
\begin{equation*}
\Delta \eta\left(x_{1} \simeq 0.5\right)=-6.036-\frac{63.074}{C_{n}+2}-\frac{238.165}{\left(C_{n}+2\right)^{2}}+\frac{303.543}{\left(C_{n}+2\right)^{3}} \tag{6}
\end{equation*}
$$

$10^{11} \Delta k_{\mathrm{S}}\left(\phi_{1} \simeq 0.5\right)=2.175-\frac{41.345}{C_{\mathrm{n}}+2}-\frac{498.802}{\left(C_{\mathrm{n}}+2\right)^{2}}+\frac{848.285}{\left(C_{\mathrm{n}}+2\right)^{3}}$
These relations are applicable only at 298.15 K . The average standard errors in the calculations of $\Delta \eta$ and Δk_{S} from eqs 6 and 7 are, respectively, $0.08 \mathrm{mPa} \cdot s$ and $0.267 \times 10^{-11} \mathrm{~Pa}^{-1}$.

Increased interest in the optical properties of liquids and liquid mixtures prompted us to calculate the excess molar refractions R^{E} from the Lorentz-Lorenz mixing rule (39) as

$$
\begin{equation*}
R^{\mathrm{E}}=R_{\mathrm{m}}-R_{1} \phi_{1}-R_{2} \phi_{2} \tag{8}
\end{equation*}
$$

where R_{m} is the molar refraction of the binary mixture calculated from the Lorentz-Lorenz relation. The quantities R_{1} and R_{2} refer to molar refractions of pure components. The results of R^{E} are shown in Figure 4. The R^{E} values for MAA +1 -pentanol system are very close to zero, while for mirtures of MAA with 1-hexanol, 1-heptanol, and 2-octanol these increase in the negative direction. However, for the remaining mixtures, $R^{\text {E }}$ values are positive and show a very systematic behavior throughout the composition of the mixture.

Each set of derived quantities $Y^{\mathrm{E}}\left(=V^{\mathrm{E}}, \Delta \eta, \Delta k_{\mathrm{S}}\right.$, and $\left.R^{\mathrm{E}}\right)$ have been fitted to the Redlich-Kister (10) polynomial relation

$$
\begin{equation*}
Y^{£}=c_{1} c_{2} \sum_{i=0}^{3} a_{i}\left(c_{2}-c_{1}\right)^{i} \tag{9}
\end{equation*}
$$

to estimate the regression coefficients a_{i} and standard errors σ. The Δk_{S} and R^{E} results are fitted by using the volume fraction differences while those of V^{E} and $\Delta \eta$ are fitted by mole fraction differences as given in eq 9. These values are summarized in Table III. A third-order fit in almost all cases reproduced insignificant differences between the calculated and observed excess quantities. The back-calculated values of $V^{\mathrm{E}}, \Delta \eta, \Delta k_{\mathrm{S}}$, and R^{E} are used as guidelines to draw the smooth curves given in Figures 1-4. Different symbols in all these figures represent the observed points.

Literature Cited

(1) Joshi, S. S.; Aminabhavi, T. M.; Shukla, S. S. Can. J. Chem. 1990, $68,251$.
(2) Joshi, S. S.; Aminabhavi, T. M.; Shukla, S. S. J. Chem. Eng. Data 1990, 35, 247.
(3) Joshi, S. S.; Aminabhavi, T. M.; Shukla, S. S. J. Chem. Eng. Data 1990, 35, 187.
(4) Joshi, S. S.; Aminabhavi, T. M. Fluid Phase Equilib. 1990, 60, 319.
(5) Aminabhavi, V. A.; Aminabhavi, T. M.; Balundgi, R. H. Ind. Eng. Chem. Res. 1990, 29, 2106.
(6) Aminabhavi, T. M.; Joehi, S. S.; Balundgi, R. H.; Shukla, S. S. Can. J. Chem. 1991, 69, 1028.
(7) Aralaguppi, M. I.; Aminabhavi, T. M.; Balundgi, R. H.; Joshi, S. S. J. Phys. Chem. 1991, 95, 5299.
(8) Chatwal, G. R. Reaction Mechanism and Reagents in Organic Chemistry; Himalaya Publishing House: Bombay, 1987.
(9) Franks, F.; Desnoyers, J. E. In Water Sciences Reviews; Franks, F., Ed.; Cambridge University Press: Cambridge 1985; Vol. 1, p 171.
(10) Redlich, O.; Kister, A. T. Ind. Eng. Chem. 1948, 40, 435.
(11) Vogel, A. I. In Text Book of Practical Organic Chemistry, 5th ed.; Furniss, B. S., Hannaford, A. J., Smith, P. W. G., Tatchel, A. R., Eds.; John Wiley and Sons: New York, 1989 (revised).
(12) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents. Techniques of Chemistry; Wiley: New York, 1986; Vol. II.
(13) C.R.C.Handbook of Chemistry and Physics; Weast, R. C., Ed.; CRC Press: Cleveland 1974.
(14) Kell, G. S. J. Chem. Eng. Data 1975, $20,97$.
(15) Nath, J.; Dixit, A. P. J. Chem. Eng. Data 1984, 29, 320.
(16) Nath, J.; Tripathi, A. D. J. Chem. Eng. Data 1983, 28, 263.
(17) Wilson, J. N. Chem. Rev. 1939, 25, 377.
(18) Mecke, R. Discuss. Faraday Soc. 1950, 9, 161.
(19) Alonso, R.; Corrales, J. A. J. Chem. Thermodyn. 1989, 21, 515.
(20) Rao, M. V. P.; Naidu, P. R. Can. J. Chem. 1974, 52, 788.
(21) Choudary, N. V.; Krishnaiah, A.; Naidu, P. R. J.Chem. Eng. Data 1982, 27, 412.
(22) Naorem, H.; Suri, S. K. J. Chem. Eng. Data 1989, 34, 395.
(23) Karunakar, J.; Reddy, K. D.; Rao, M. V. P. J. Chem. Eng. Data 1982, 27, 346.
(24) Mouli, J. C.; Naidu, P. R.; Choudary, N. V. J. Chem. Eng. Data 1986, 31, 493.
(25) Vijayalakshmi, T. S.; Naidu, P. R. J. Chem. Eng. Data 1989, 34, 413.
(26) Ramkumar, D. H. S.; Kudchadkar, A. P. J. Chem. Eng. Data 1989, 34, 459.
(27) Paez, S.; Contreras, M. J. Chem. Eng. Data 1989, 34, 455.
(28) Heintz, A. Ber. Bunsen-Ges. Phys. Chem. 1985, 89, 172.
(29) Grunberg, L.; Nissan, A. H. Trans. Faraday Soc. 1949, 45, 125.
(30) Garcia, B.; Herrera, C.; Leal, J. M. J. Chem. Eng. Data 1991, 36, 269.
(31) Pikkarainen, L. J. Chem. Eng. Data 1983, 28, 344.
(32) Kumar, A.; Prakash, O.; Prakash, S. J. Chem. Eng. Data 1981, 26, 64.
(33) Oswal, S. Can. J. Chem. 1988, 66, 111.
(34) Karunakar, J.; Reddy, K. D.; Rao, M. V. P. J. Chem. Eng. Data 1982, 27, 348.
(35) Kumar, A.; Prakash, O.; Prakash, S. J. Chem. Eng. Data 1981, 26, 64.
(36) Fort, R. J.; Moore, W. R. Trans. Faraday Soc. 1965, 61, 2102.
(37) Chandramouli, J.; Choudary, N. V.; Krishnaiah, A.; Naidu, P. R. Fluid Phase Equilib. 1982, 8, 72.
(38) Chandramouli, J.; Choudary, N. V.; Naidu, P. R. Indian J. Pure Appl. Phys. 1982, 20, 755.
(39) Lorentz, H. A. Theory of Electrons; Teubner: Leipzig, 1909.
(40) Eduljee, G. H.; Boyes, A. P. J. Chem. Eng. Data 1980, 25, 249.
(41) Rauf, M. A.; Stewart, G. H.; Farhataziz. J. Chem. Eng. Data 1983, $28,324$.
(42) Uosaki, Y.; Hamaguchi, T.; Moriyoshi, T. J. Chem. Thermodyn. 1992, 24, 549.
(43) Dewan, R. K.; Mehta, S. K.; Parashar, R.; Bala, K. J. Chem. Soc., Faraday Trans. 1991, 87, 1561.
(44) Sarmiento, F.; Paz Andrade, M. I.; Fernandez, J.; Bravo, R.; Pintos, M. J. Chem. Eng. Data 1985, 30, 321.

Received for review January 15, 1992. Revised August 11, 1992. Accepted September 11, 1992. The authors are thankful to the University Grants Commission, New Delhi, for financial support (F.12-55/88-SR-III) of this study.

[^0]: * To whom correspondence to be addressed.
 ${ }^{\dagger}$ Based on the Ph.D. thesis of M.I.A., submitted to Karnatak University. We dedicate this paper to Professor Petr Munk, University of Texas, on the occasion of his 60th birthday.

